天井設置された自然換気用有孔ダクトの設計手法に関する研究

(その1)換気回路網を用いた吹出し風量計算手法

正会員○若狭弥保*1 同 山中俊夫*2 同 小林知広*3 桃井良尚*4 同 田中宏明*5 同 藤井拓郎*5 守雅俊*5

4. 環境工学 - 13. 空気流動応用 - I. オフィス等の自然換気・ハイブリッド換気 自然換気,換気回路網計算,パンチングメタル

1. はじめに

一般的なオフィスにおいて換気空調にかかる消費 エネルギーは全体の約50%に及び1、自然換気導 入による大きな省エネルギー効果が期待される。

その一方で、自然換気が運用される外気温度の下 限値を15℃と設定する場合、ペリカウンターや窓 面からの外気流入であれば、吹出風速によっては コールドドラフトによる不快感が懸念される²⁾。ま た間仕切壁などで隔たれた室空間がある場合、水平 方向の自然換気経路確保の為欄間やパスダクトが必 要となり 3) 個室間仕切壁の多い空間による自然換気 システムの導入は難しいのが現状である。

そこで本研究では、水平方向の換気経路を室奥ま で確保することを目的として、下面部がパンチング メタルで構成された角ダクトを室の天井面に設置し た自然換気システムの導入を提案する。本報では、 ダクトから執務室内への吹出し風量の予測方法とし て換気回路網計算を用いたモデルを提案し、この風 量予測結果を CFD 解析結果を比較することで最適 化を行った後、室内吹出し風量が均等となるパンチ ングメタルの開孔率分布の算定を行った。

2. 自然換気システム概要

2.1 有孔ダクト

自然換気口口

外気

本研究で提案する自然換気システムの概要、ダク トの概念図を図1、2に示す。自然換気口から給気

された新鮮空気は、幅 500mm、高さ 350mm の下面 部が有孔板で構成されたダクト(以下、NVダクト) を通って室の奥まで運ばれる。NV ダクトの下面部 はパンチングメタルで構成されているため、新鮮空 気はこの開孔部から室内に低風速で給気される。本 システム導入の利点は主に3つ挙げられる。

- ・ドラフトリスク抑制による自然換気可能期間拡大
- ・冷却されたパンチングメタルからの放射効果
- ・間仕切り壁を有する室への自然換気導入の可能性

2.2 空調方法・換気経路

本システムは、オフィスの執務室内での利用を 想定している。執務室には図3に示すような幅 3,200mm、奥行 19,400mm、高さ 4,100mm の空間が 等間隔に並んでいるものとして、これを回路網計算、 CFD における計算対象空間とした。対象空間内の 斜線部の断面における換気手法の概要図を図4に示 す。自然換気システム運用時、自然換気口から導入 された新鮮外気は NV ダクトを通り、下面部のパン チングメタルより給気される。排気は図4の両端に

500

Design Method of Ceiling-Mounted Perforated Metal Duct for Natural Ventilation (Part1) Prediction Method of Supply Air Flow Rate Distribution with Airflow Network Calculation ある排気パネルから行われ、空気が執務空間から天 井チャンバー内へ運ばれる。天井チャンバーに設置 されたパスダクトを通じて重力換気が行われるシャ フトに誘引され屋上空間で外気へ排気される。

3. 換気回路網計算による吹出し風量の算定手法

3.1 一列法

換気回路網計算では、ある区切られた室や空間を 節点、節点同士の間に存在する流動抵抗を枝管として捉え、節点同士を結ぶことにより、換気経路を回 路のように表す。本報では、一列法⁴⁾と呼ばれる解 法を用いて換気計算を行う。この解法は流れの方向 が一方向である一列に並んだ空間の換気量計算をするときに用いられる。一列法では、初めに最上流の 節点の圧力を仮定する。仮定値を用いて各節点の圧力、節点間の流量を算出し、下流まで計算を行う。 このとき、最下流の節点において流入量と流出量の 収支がとれるはずである。この収支式の変数は最初 に仮定した圧力であることから、この仮定値の真値 を繰り返し計算により求めていく解法である。

3.2 モデル概要

図3で示した計算対象空間内でNVダクト内の給気量と吹出し風量の収支が成り立つと想定してモデルの構築を行った。換気回路網モデルを図5に示す。ダクト内をn分割し、ダクト内に分割領域が一列に並んでいると想定している。本報ではn=500として計算を行った。NVダクトの入口部分の分割領域内の静圧 P_0 を仮定し、繰り返し計算により静圧 P_0 の真値を求める。以下、モデルの基礎式を示す。

①自然換気口から有孔ダクトへ導入される風量 V_{θ} 外気と分割領域内の静圧差から以下の式で求める。 \mathbf{p}

$$V_0 = \alpha_o A_o \sqrt{\frac{2}{\rho} |P_{out} - P_0^j|}$$
 ...(1)

②有孔ダクトの分割領域からの室内吹出し風量V, パンチングメタルの風圧係数は0と考えて、分割領域と室内の静圧差から式(2)で求める。

表 1 回路網モデル計算条件

	衣 ! Ŀ	当時物で
	a,[-]	0.086
パンチング メタル	β[-]	0.097
	$d_p[m]$	0.4
	$l_p[m]$	1.22
	C[-]	1.604
	$\zeta_p[-]$	152.3
	$A_{p}[m^{2}]$	0.081

自然換気口	$\alpha_o[-]$	0.65
	$A_o[\text{m}^2]$	0.175
NVダクト	$A_d[\text{m}^2]$	0.175
境界条件	$P_{out}[Pa]$	0
	$P_{room}[Pa]$	-10
	$\rho[\text{kg/m}^3]$	1.2

$$V_{ri} = \alpha_r A_r \sqrt{\frac{2}{\rho} |P_{i-1} - P_{room}|}$$
 ...(2)

③分割領域から下流側の分割領域へ流入する流量 V

$$V_i = V_{i-1} - Vr_i ...(3)$$

④分割領域内の静圧 P

連続する分割領域において全圧の収支式を立てると

$$\left\{P_i + \frac{\rho}{2} \cdot \left(\frac{V_i}{A_d}\right)^2\right\} - \zeta \cdot \frac{\rho}{2} \cdot \left(\frac{V_{i-1}}{A_d}\right)^2 = \left\{P_{i-1} + \frac{\rho}{2} \cdot \left(\frac{V_{i-1}}{A_d}\right)^2\right\} \qquad \dots (4)$$

となる為分割領域iにおけるPは以下の式で求める。

$$P_{i} = P_{i-1} - \frac{\rho}{2} \frac{1}{A_{d}^{2}} \left\{ V_{i}^{2} - (1 - \zeta) V_{i-1}^{2} \right\} \qquad \dots (5)$$

NV ダクトの最も下流側に存在する分割領域 *n-1* の 開口部は分割領域をつなぐ開口とパンチングメタル 内の開孔部だけであるから、以下の収支式が成り立つはずである。

$$E^{j}(P_{0}) = -V_{n-1} + Vr_{n} = 0 ...(6)$$

二分法により収支式 (6) が成立する P_0 を算定する。

3.3 計算条件

換気回路網計算で用いた各計算条件を**表1**に示す。また、境界条件として、外気圧を 0Pa、室内圧を -10Pa と与え、室内圧が一定となるような換気駆動力があるものと仮定している。

パンチングメタルの開孔部で与えられる抵抗係数 ζ_p は比例定数 C、抵抗値の開孔率 β 、孔径 d_p 、ピッチ l_p を用いて以下の式から求める $^{5)}$ 。

$$\zeta_p = C \cdot (1 - \beta)/\beta^2 \qquad \dots (7)$$

$$\beta = \left(\frac{\pi}{2\sqrt{3}}\right) \cdot \left(\frac{d_p}{l_p}\right)^2 \qquad \dots (8)$$

ゆえに流量係数 α_r は式 (9) で求められる。

$$\alpha_r = \frac{1}{\sqrt{\zeta_n}} \qquad \dots (9)$$

分割領域で生じる抵抗値は、NV ダクト内表面の摩擦による圧力抵抗 ζ_1 及びパンチングメタルから空気が流出する際に発生する分流抵抗 ζ_2 が考えられるが、抵抗値の推定が難しい。そのため本研究では、 $\zeta=\zeta_1+\zeta_2$ とし、 ζ の値をパラメータとして 0.004から 0.04 の間で 8 条件変化させて計算を行った。

3.4 計算結果

圧力損失係数 ζ をパラメータとした換気回路網計算モデルによる NV ダクト下部面のパンチングメタルの面風速の計算結果を図 δ に示す。風速は吹出し風量 Vrを分割領域のパンチングメタル面積 Ar で除すことで求めた。 ζ の値が小さければダクトの奥の部分で風速が上昇する傾向が見られた。ダクトの奥でダクト内静圧が上昇した為であると考えられる。

4 CFD 解析

4.1 解析空間・解析条件

解析空間のアイソメ図、NV ダクトの境界条件を 図7に示す。解析条件を表2に示す。換気回路網モデルで計算を行った空間が対称性を持つため、計算 負荷軽減を目的として換気回路網モデルと同様の空

パンチングメタルの開孔部は計算負荷軽減の為、厚 みのない面として圧力損失を与えて計算を行った。 圧力損失係数は回路網計算モデルと同一の値とし た。対称面、下面部以外のダクト内表面の境界条件 は一般化対数則とした。

4.2 回路網計算モデルと CFD の比較

回路網計算モデルにおいてくを 0.004, 0.01, 0.04 としたときに算定された自然換気口からの流入量 V_a を流入境界として3条件 CFD 解析を行った。NV ダクト内通過風量VのCFD解析結果を流入量 V_0 で 除し無次元化したところ、図8のように、3条件が 概ね同様の分布となったことから、この範囲ではダ クト内通過風量分布は流入量に依存しないと考えら れる。そこで、回路網計算モデル及び CFD 解析で 得られたダクト内通過風量を自然換気口からの流入 量で無次元化して比較を行った。図9に回路網計 算でζ=0.01 として算定した流入量を流入境界とし た CFD による無次元化風量と、回路網計算モデル で算定した無次元化風量の水平分布を重ねて示す。 ζ =0.01 で与えた回路網計算モデルと CFD の結果が 概ね一致していることから、以後の検討では $\zeta=0.01$ とした回路網計算モデルを用いることとする。

5. 吹出し風量が一様となる有孔板の開孔率分布

室内空気質を均一にするには、室内の奥まで新鮮 外気が給気されるべきと考えられる。そこで、NV

THE THE		2 解析条件	,,,,	00	c
解析ソフト			STREAM V14		
乱流モデル			標準k-εモデル		
計算アルゴリズム			SIMPLE		
離散スキーム			QUICK		
境界条件		流入面		流量規定	
		流出面		表面圧力	
		Xmin		対称面	
	壁面境界	Xmax		フリースリップ	
	Ymin, max Zmin, ma		ıax	対数則	
パンチング メタル	モデリング		圧力損失		
	圧力損失係数		152.3		
メッシュ数		904,400			
3				$V_0 = 0.445$	$0 \text{m}^3/\text{s} \ (\zeta=0.0 \text{ m}^3/\text{s} \ (\zeta=0$

5 距離(m) 15 図 8 無次元化風量分布 (CFD)

無次元化風量 $V/V_{g}(\cdot)$

0.2

ダクトからの吹出し風量の水平分布が一様となるパンチングメタルの開孔率分布の予測を行った。

5.1 計算方法

任意の P_0 を代入して、式(1)を用いて自然換気口から流入する風量 V_0 を算出する。

吹出し風量が一様であるから、吹出し風量 Vr は V_o と分割数 n(=500) を用いて以下の式で表される。

$$V_r = V_0/n \qquad \dots (10)$$

式 (2) を変形すると、微小区間 i における流量係数 α_r の値は以下の式から得られる。

$$\alpha_{ri} = \frac{Vr}{A_r \sqrt{\frac{2}{p} |P_{i-1} - P_{room}|}} \dots (11)$$

式 (3), (5) を用いて V, P を算出し、上流から順に計算を行い分割領域ごとの開孔率分布を求める。

5.2 計算結果

 P_{θ} の値をパラメータとして -1Pa \sim -7.5Pa の間で変化させて算定したパンチングメタルの開孔率、ダクト内の静圧、換気回数を図 10 \sim 12 に示す。但し P_{θ} の値が -7.65Pa より小さい場合ダクト内と室内

- * 1 大阪大学大学院工学研究科地球総合工学専攻 博士前期課程
- * 2 大阪大学大学院工学研究科地球総合工学専攻 教授・博士(工学)
- * 3 大阪大学大学院工学研究科地球総合工学専攻 準教授・博士 (工学)
- * 4 福井大学学術研究院工学系部門建築建設工学分野 講師・博士 (工学)
- * 5 株式会社日建設計

の静圧が等しくなり吹出し風量が0となる分割領域が現れ、解が得られなかった。換気回数は、流入量 V_0 を執務室空間の容積173.824m³で除して求めた。 P_0 が室内圧に近付くほど、開孔率は大きくなる傾向が見られた。吹出し風量がダクト内と室内の静圧差に依存していることが原因であると考えられる。

6. おわりに

本報では有孔ダクト天井を用いた自然換気システムにおける、換気回路網モデルによる吹出し風量分布の算定方法の提案、ダクト吹出し風量の水平分布が均一となるような開孔率の分布を算定を行った。 今後は実験を行い圧力損失係数 ζ の真値を取得し、 回路網計算モデルの精度向上を図る予定である。

- 1) 経済産業省資源エネルギー庁 省エネルギー対策課: ZEB ロードマップ検討委員会における ZEB の定義・今後の施策など (2015), p.5
- 2) 山本佳嗣, 田辺新一:自然換気システムの換気口開放条件に関する研究 (2016), 日本建築学会環境系論文集, pp.375-384 3) 日本建築学会:実務者のための自然換気ハンドブック, 技報堂出版 (2013), pp.41-43
- 4) 石原正雄:建築換気設計 (1969), pp.158-159, 朝倉書店
- 5) 日本機械学会: 管路・ダクトの流体抵抗 (1993), pp.110-112

Graduate student, Division of Global Architecture, Graduate School of Engineering, Osaka University

 $Prof., Division of Global \ Architecture, \ Graduate \ School of Engineering, \ Osaka \ University, \ Dr. Eng.$

Assistant Prof., Division of Global Architecture, Graduate School of Engineering, Osaka University, Dr.Eng.

Senior Assistant Prof., Dept. of Architecture and Civil Engineering, Graduate School of Eng., University of Fukui, Dr. Eng. Nikken Sekkei Ltd.