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Abstract 

This paper first presents a parametric study using computational fluid dynamics (CFD) as a 
numerical experiment. A heating element was located at the centre of the room and CO2 gas was emitted. 
Two cases of ceiling height, 2,700 and 5,400 mm were studied. Total supply flow rate was also changed 
as a parameter, and four conditions of 400, 600, 900, 1,200 m3/h were studied. The number of air supply 
terminals was changed as well to understand the impact of supply airflow momentum among the cases 
of the same total supply flow rate, and four cases were studied, i.e., 1, 2, 4, 6 terminals. In total, 32 cases 
were analysed by CFD. Secondly, the paper presents a simplified prediction model for the vertical 
profile of temperature and contaminant concentration for IJV system. The model is basically based on 
“Block Model” where the turbulent diffusivity is the most important parameter. The room blocks are 
classified into two types, i.e., lower and upper part of a room. The blocks within the same part of the 
room adopted the same value for turbulent thermal diffusivity, and the appropriate diffusivity was 
determined. This paper arranges the equation to predict turbulent thermal diffusivity based on specific 
Archimedes number. By comparing the predicted vertical profiles of temperature and concentration 
between block model with CFD result, the accuracy of the simplified model is finally verified.  
Keywords: impinging jet, temperature stratification, CFD, block model 
 
 
1 Introduction 

The impinging jet ventilation (IJV) system is a relatively new air distribution strategy that supplies 
air vertically toward the floor (e.g., see Karimipanah and Awbi (2002)). As well as displacement 
ventilation (DV) system, IJV system can provide higher ventilation effectiveness compared to the 
conventional mixing ventilation. Due to the medium momentum of supplied air, the IJV system could 
overcome the difficulties that could exist in DV system with low momentum supply. To date, however, 
no simplified prediction model to predict indoor environment of an impinging jet ventilated room has 
been established. Therefore, this study aims to propose a calculation model of the vertical profile of 
both temperature and contaminant concentration for IJV system. In order to understand the impact of 
supply air momentum on vertical temperature/concentration profile, a parametric study is performed 
using CFD where flow rate, number of supply terminal and ceiling height are changed. The simplified 
prediction method presented in this paper is based on the “Block Model” proposed by Togari et al. 
(1993). Since the turbulent diffusivity for temperature and concentration is important parameter, this 
paper presents how to give the appropriate value for these diffusivities, and the accuracy of the block 
model is verified by comparing the results with CFD. 

 
 

2 CFD Analysis 

A room with IJV system was simulated by using CFD. The basic plan of the room is 9,000 mm 
long × 5,000 mm wide, which is the same as the full-scale experiment conducted in the previous work 
by Kobayashi et al. (2017) where CFD was validated by comparison with experiment. This paper first 
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presents the numerical experiment using CFD by changing the number of supply terminal, total flow 
rate, and ceiling height. Four cases of the number of terminals were studied as shown in Figure 1 to see 
the effect of supply airflow momentum under the same condition of total supply airflow rate. The total 
supply airflow rate was also changed as 400, 600, 900, 1,200 CMH, and two cases of the ceiling height 
were analysed, i.e., CH=2,700 and 5, 400 mm. In total, therefore, 32 cases were simulated by CFD. A 
heating element of 2.0 kW was located at centre of the room. The steady state calculation was carried 
out by using SST k-ω model with SIMPLE algorithm. The inlet temperature was fixed at 20 °C, and 
internal radiative heat transfer was also calculated by surface-to-surface model. The CO2 gas was 
emitted at the rate of 60 L/h above the heating element. 

 

 
Figure 1. Studied room model (Number of IJV supply terminals) 

 
3 Simplified prediction method using block Model 

The simplified prediction model used in this paper is based on the “block model” proposed by 
Togari et al. (1993). Figure 2 illustrates the schematic of the block mode, where mass conservation and 
heat transfer by advection and diffusion are solved. A room is classified into three types, i.e., The height 
of each room block was 270 mm which leads to 10 or 20 room blocks in the case of CH=2,700 and 
5,400 mm respectively. Figure 3 gives the details of the heat and mass transfer regarding the room 
block. Table 1 summarises the basic formula solved. For more details of wall surface current model, 
see Togari et al (1993). 

 

 
Figure 2. Schematic of Block Model                      Figure 4. Correlation between at and Ar 

 
Figure 3: Mass and heat transfer among adjacent control volume 
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The turbulent diffusivity is the most important parameter which has a significant effect on both 
temperature and concentration profile. In the proposed prediction method, the horizontal boundary 
between two room blocks are classified into two types, i.e., lower and upper part of a room. At the 
boundary within the same part of the room, the turbulent thermal diffusivity is assumed to be uniform, 
and the appropriate combination of turbulent thermal diffusivity for upper and lower boundary (at_upper, 
at_lower [m2/s]) were determined based on CFD using the least squares method. Since it is important to 
predict the diffusivity only from the design factor, a correlation between turbulent thermal diffusivity 
and specific Archimedes number for upper and lower part (Arroom and ArSA) were arranged as shown in 
Figure 3 where regression line is also added as a function of Arroom and ArSA. As for the contaminant 
(CO2) concentration, turbulent mass diffusivity Dt_lower and Dt_upper was assumed to be the same as 
turbulent thermal diffusivity at for simplicity. This means the turbulent Schmidt number was assumed 
to be the same as turbulent Prandtl number. 

 

Table 1. Equations solved in the block model 

 
 

Figure 5 shows the extracted results of vertical profile of temperature and CO2 concentration 
obtained from the block model and CFD. As for the block model, results of two ways to give turbulent 
thermal diffusivity are shown, i.e., determined from the least squares method and estimated using 
equation shown in Figure 3. The results of CFD means the vertical profile of horizontally-averaged 
value. Based on the validation procedure in the previous work (Kobayashi et al. (2017)), CFD results 
are regarded reliable results here. In the case of four IJV terminals (Case 3) and low supply flow rate, 
i.e., low supply momentum, the profile shows stronger stratification. Comparing the results between 
CFD and block model, relatively good agreement can be seen, which indicates the proposed model 
considering two parts of the room and correspondingly two diffusivities worked well. 
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Figure 5. Extracted results of vertical profile obtained from CFD and Block Model (CH=2,700 mm) 

 
 

5 Conclusions 

A simplified model to predict vertical profile of temperature and concentration was proposed 
based on the block model considering two types of diffusivity, which showed the good performance. 
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