Study on Performance Verification and Evaluation of District Heating and Cooling System using Thermal Energy of River Water

Part 4: Performance Evaluation of Annual Operation from 2005 to 2006

The DHC system in the block 3 in Nakanoshima was planned to utilize "unutilized energy", such as thermal energy of river water. This DHC system was completed in December 2004, and two years passed after it began to operate the system. This report outlines results of the performance evaluation on annual operation from 2005 to 2006.

Figure 1. Intake/Outlet route of river water and district heating and cooling area

Figure 2. DHC system diagram

<table>
<thead>
<tr>
<th>Code/Name</th>
<th>Cooling Cap</th>
<th>Heating Cap</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHB</td>
<td>Chilling</td>
<td>3,082 MJ/h</td>
<td>3,607 MJ/h</td>
</tr>
<tr>
<td>WaterSource</td>
<td>StorageTank</td>
<td>4,403 MJ/h</td>
<td>2,488 MJ/h</td>
</tr>
<tr>
<td>TR</td>
<td></td>
<td>5,063 MJ/h</td>
<td>6</td>
</tr>
<tr>
<td>HSH</td>
<td></td>
<td>837 MJ/h</td>
<td>1</td>
</tr>
<tr>
<td>WaterSource</td>
<td>Screw/Hp</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>IST</td>
<td>WaterVolume</td>
<td>100m³</td>
<td>8</td>
</tr>
<tr>
<td>IST</td>
<td>IceStorage</td>
<td>10hStorage: Cap. 17,230 MJ</td>
<td>8</td>
</tr>
<tr>
<td>HST</td>
<td>WaterVolume</td>
<td>322 m³</td>
<td>1</td>
</tr>
<tr>
<td>AS</td>
<td>Automatic</td>
<td>1,800 m³/h</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1. Specification of main equipments
1. 熱源システムの概要と計画案

図1に河川水取排水路と熱供給範囲を、図2及び表1に、熱供給システムの系統図及び主要機器の仕様を表示（以降機器名は表中の記号とする）計画にあたっては、高効率・電力負荷平均化とともに、省スペースを目指し、蓄熱方式として、図3に示すように、地下ビットを蓄熱槽に活用した直径160mm水蓄熱システムが採用されている。ISTは、地下ビット内に約800m³を構築し、ピークの日冷水供給の37%にあたる138GJ（10°C差の蓄熱槽で3,500m³必要）を夜間蓄熱することができる。IHPは製氷・冷水および、高効率な運転が可能な製氷熱回収・冷水熱回収の4モードを備え、年間負荷パターンに応じて、最適モードに切替えて運転する。夜間及び温水負荷の無い時期の冷水負荷のベースラインとしてのTR及び、変電所の排熱をヒートソースとしての工場専用のIHPが設置されている。冷水供給において、IHPの冷凍回収とISTの冷蔵運転をセミナーに接続することにより、IHPの冷凍入口温度の低下を抑え、効率的な冷凍水温度差の常時供給が可能である。また、IHP各機器は、常に効率の良い全負荷運転を行うよう、負荷変動には8種の台数制御で対応している。これらにより、搬送能力の低減とともに、熱源の高効率な運転を行う計画となっている。

2. 熱源システムの運転実績

2.1 河川水温度と外気温度

図4及び図5に夜間及び昼間の月平均河川水温度と月平均外気温度を示す。河川水の温度は昼間、夜間の温度はほぼ同じである。河川水温度は、外気温度に対して、夏季で最大2.5℃低く（2006年8月昼間）、冬季で最大4.9℃高く（2005年12月夜間）なっている。

2.2 供給熱量と生産熱量

図6に1年間の月別供給熱量及び生産熱量を示す。図7に熱源別・モード別の生産熱量を示す。冬季から春期にかけての冷水の排出はほとんどで、熱回収され、不足分は河川水をヒートソースとした蓄冷運転及び変電所排熱による温水運転（IHP）で補われている。図88月別の生産熱量の構成比率を示す。夏季はIHP製氷運転をベースに、昼間の冷水冷蔵運転をTR及びIHP冷蔵運転で行っていることがわかる。図9に1年間生産冷熱量の構成比率を示す。IHPの生産熱量が製氷運転と冷水運転で約5/4を占め、TRの生産熱量は17%程度であった。熱回収運転の生産熱量は10%程度で、冬季の熱需要はほぼすべて製氷熱回収及び冷水熱回収の熱回収熱で賄われている。

2.3 電力消費量

図10に1年間の月別電力消費量を、図11にその構成比率を示す。また、図12に年間電力消費量の構成比率を示す。熱源機器の電力消費量は全体の約80%（補機を含む）、河川水ポンプが約9-8％、変電所関係、その他が11-13%となっている。図13に、補機動作（河川水関連＋変電所関連＋その他（換気・照明）及び河川水関連電力消費量の比率を示す。補機電力の比率は、夏季（6-9月）で20%程度、冬季（12月）で15-20%、中間期は20-30%であった。河川水関連電力の比率は、夏季で10-13%，冬季は5%未満であった。

注）IHP運転モードの略記

IHP-C: 冷水運転 IHP-I: 製氷運転 IHP-IH：製氷熱回収運転＋河川水熱源温水運転 IHP-CH：冷水熱回収運転
3. 熱源システムの性能検証・評価

3.1 熱源機器別 COP

図14に、熱源機器別COPの月別推移を示す。図15に各機器の年間平均COPを2005年と2006年を比較して示す。HPの製水運転が3.0-3.1、冷水運転が4.3-4.4、TRが5.6-5.8、HPが4.8-5.0で、いずれも所定の性能を維持していることを確認した。

3.2 プラントCOPとシステムCOP

図16にシステムCOP\(^{32}\)とプラントCOP\(^{32}\)を、図17に一次エネルギー換算のシステムCOPとプラントCOP及び夜間電力比率\(^{33}\)の月別推移を示す。年平均システムCOPは2005年2.98、2006年3.11、年平均一次エネルギー換算プラントCOPは、2005年0.87、2006年0.93で、概ね計画時の性能を発揮していることを確認した。また、夜間の年間電力比率は0.55、0.57であり、高い夜間電力比率を維持し続けている。なお、一次エネルギー換算係数は、屋間電力9,970kWh、屋間電力9,280kWhを用いた。

注1) システムCOP＝販売熱量／照明・換気等を除くエネルギー量
注2) プラントCOP＝販売熱量／プラントで消費したエネルギー量
注3) 夜間電力比率＝夜間電力消費量／全電力消費量
4. 河川水利用状況の確認

河川水は、堂島川より取水し、土佐堀川に排水している。図18に、夏季（2006年6月〜9月）の排水温度差（排水温度T3〜土佐堀川水温T4）と取水温度差（排水温度T3〜堂島川水温T2）の散布図を示す。取水温度差（縦軸）は4℃程度までの分布が多く、排水温度差（横軸）はばらつきがあるものの4.5℃程度まで分布が広がっており、取水温度差よりも排水温度差が制限要因になっている状況が伺える。

5. 性能検証による運用改善効果

熱供給施設では、事業者、設計者、施工者、有識者から成る性能検証会議を実施し、性能の検証評価と運用改善検討を継続的に行っている。図19に過去12ヶ月の供給熱度と一次換算エネルギー、図20に過去12ヶ月の一次換算プラントCOPの推移を示す。供給開始12ヶ月時点（2006年1月）から2006年12月までに約76％のCOPが向上していることがわかる。その結果、図21に示すように、累積の一次換算プラントCOPの向上が示され、供給開始初期の0.85程度から0.90程度まで向上してきており、現在も運用改善の取り組みを継続して実施している。詳細は次報に委ねる。

6. まとめ

本報では、河川水利用地域熱供給施設について、2005年1月の供給開始から2006年12月までの2年間における経緯的な性能検証・評価の結果について報告した。今後も継続的に検証を継続する予定である。

参考文献
1. 内閣官房都市再生本部事務局：「地球温暖化対策・ヒートアイランド対策地域設定」について、2005.4.11
2. 友成・中村・丹羽・相良・下田・三浦・国松・種：河川用水域地域熱供給システムの性能検証・評価に関する研究（第1報〜第3報）平成17年度気象庁・衛生工学会気象灾害対策研究委員会報告、2006.3