左右の梁せいが異なる角形鋼管柱・梁接合部パネルの力学性状 (その3.十字架構載荷実験結果および考察)

静載荷実験	段違いパネル	荷重・変形関係		
	角形鋼管	せん断耐力		

1.序

本論その3では,その2で述べた角形鋼管柱・H形鋼 段違い梁接合部パネルを対象とした十字架構載荷実験の 結果について報告し,考察を行う.またその1で提案し たパネルの耐力推定式による計算値と実験値とを比較・ 検討する.

2.実験結果および考察

図1 に梁せい差をパラメーターとして重ね合わせた骨格曲線を示す.図の縦軸はその2(4)式から得られるパネル平均せん断力, Q,横軸はその2(1)式から得られる平均せん断変形角 アである.また,図中の三角印はパネル平均せん断力-平均せん断変形角関係の0.35% offset値を示す.本論ではこれを全塑性耐力の実験値Qpeと定義するQpe は曲げモーメントを受ける部材の全塑性モーメン

トに対応する指標で、パネル全体がせん断降伏応力度に 達する状態を想定している.すなわち、1軸引張応力状 態の鋼材の降伏点は 0.2% オフセット値で定義されるが、 純せん断応力状態では、 $\overline{\gamma} = 0.35\%$ オフセット値がそれ に対応すると考える、図より軸力の有無に関わらず梁せ い差100mmのとき耐力の低下が見られ、梁せい差200mm のとき再び耐力が上昇する.表1にその1 (14)・(16)・(20) 式から得られる $\overline{,Q_P^A} \cdot \overline{,Q_P^B}$ の計算値を示す.また、図2は それを図示したものであり、縦軸に $\overline{,Q_P^B} / \overline{,Q_P^A}$ 、横軸に梁 せい差を示す.計算値も同様の傾向を示し、実験値と計 算値の性状がよく一致していることが分かる.

図3に軸力比をパラメーターとして重ね合わせた骨格 曲線を示す.梁せい差が無い試験体では軸力による耐力 の低下はほとんど見られない.これは軸力をパネルフラ ンジが負担するためである.一方,梁せい差がある試験

The elasto-plastic behaviors of joint panels at the connection of rectangular steel column and two H-shaped beams with different depth (Part 3. Result and considerasion of the test for cruciform subassemblages) *KUMANO Takehito, KUWAHARA Susumu, MIYASADA Akira and INOUE Kazuo*

同	桑原	進 ^{*2}	
同	宮定	章 ^{*1}	
同	井上-	−朗*3	
ル全体がせん㈱	新隆伏応	力度に	
すなわち	1 軸引張	応力が	

熊野豪人*1

い差0,軸力比0のときのせん断耐力とせん断変形角で 無次元化している.図を見ると,軸力比,梁せい差に関わ らず,降伏域において曲線はほぼ重なっており,本実験 の範囲では幅厚比が耐力に及ぼす影響は見られない.

すべての試験体は測定上の限界から余力を残して載荷 を終了しており,塑性変形能力は累積塑性せん断変形角 で 0.35 rad 以上を有している.

図5に示す骨格曲線により,パネル1・パネル2の変形 性状を比較する.図の縦軸はその2(5)式から得られるパ ネル1のせん断力」Qc1およびその2(6)式から得られる パネル2のせん断力」Qc2,横軸はその2(2)式から得ら れるパネル1のせん断変形角パ1およびその2(3)式から 得られるパネル2のせん断変形角パ2である.図よりパ ネル1が大きく変形しているのに対し,パネル2の変形は 小さいことが分かる.また,梁せい差が大きくなるとパ ネル2の変形も大きくなる.図6に試験体の載荷終了時 の写真を示す.図よりパネル1が変形しているのにパネ

(R2816-5-b20)

試験体名	$egin{array}{c} K_e \ ({f t} \ / \ {f rad}) \end{array}$	$egin{array}{c} K_s \ ({f t} \ {f rad}) \end{array}$	$rac{K_e}{K_s}$	$egin{array}{c} Q_{pe} \ (ext{ton}) \end{array}$	$\overline{_J Q_P}$ (ton)	$rac{oldsymbol{Q}_{pe}}{\overline{J} oldsymbol{Q}_{P}}$
R2816-0	40499	35195	1.11	96.7	103.3	0.94
R2816-5	36004	35195	0.99	95.5	89.5	1.07
R2116-0	53931	45239	1.14	122.5	132.7	0.92
R2116-5	41282	45239	0.87	121.5	114.9	1.06
R2816-0-b10	32213	35195	0.88	92.5	93.6	0.99
R2816-5-b10	29457	35195	0.81	83.2	83.9	0.99
R2816-0-b20	36763	35195	1.03	100.6	99.0	1.02
R2816-5-b20	34045	35195	0.96	92.2	89.5	1.03
R2116-0-b10	46860	45239	0.99	122.8	118.5	1.04
R2116-5-b10	36658	45239	0.78	112.4	106.2	1.06

表2 剛性・せん断耐力一覧表

*1 大阪大学大学院工学研究科建築工学専攻・大学院生

*2 大阪大学大学院工学研究科建築工学専攻・助手

*3 京都大学大学院工学研究科生活空間学専攻・教授

ル2はほとんど変形していない様子が分かる.また梁フ ランジ・梁ウェブの一部が局部座屈している.梁せい差 があるすべての試験体で同様の傾向が見られた.以上の 結果より,実験では梁せい差を有するすべての試験体が 機構Bで降伏したと判断できる.表1に示す計算値では, R2816-5-b20を除く梁せい差を有する試験体が機構Bで崩 壊すると予想しており,実験結果と一致する.R2816-5b20については $\overline{,Q_{P}^{A}} \leftarrow \overline{,Q_{P}^{B}}$ にほとんど差がなく,崩壊機 構による差は見られなかった.このため実験では計算値 と異なる機構で降伏したと考えられる.

3.実験結果と計算結果の比較

表2に各試験体の剛性とせん断耐力の実験値および計 算値の一覧を示す.また,実験剛性 K_eと計算剛性 K_sの 比較を図7に示す.実験剛性 K_eは1/3耐力での割線剛 性であり,計算剛性 K_sはその1(13)式から得られる.図 の縦軸は実験剛性を計算剛性で除した値で,横軸は試験

> 体名である.図を見ると0.78~1.14と若干のば らつきが見られる.しかし,パネル剛性がフ レーム剛性に及ぼす影響は小さいため,フレー ム全体の剛性で考えるとほとんど影響はない.

> せん断耐力の実験値 Q_{pe} とその1 (20) 式か ら求まる計算値 $\sqrt{Q_P}$ の比較を図8に示す.図 の縦軸は実験値を計算値で除した値で 横軸は 試験体名である.図より0.94~1.07となり計算 値と実験値はよく対応している.

4.結論

本論では,角形鋼管柱・H形鋼段違い梁接合 部パネルの十字架構実験結果について述べた. 得られた結果を以下に要約する.

- (1) 角形鋼管柱・H形鋼段違い梁接合部パネルではパネル1,梁ウェブ・梁フランジの一部が降伏する機構Bで崩壊する場合がある.このときの耐力はパネル体積を全体積有効と考えた機構Aの耐力を下回る.
- (2) その1で示した耐力推定式により予測した 崩壊機構は実験結果とよく一致し,せん断 耐力の実験値は計算値の0.94 ~ 1.07 とな る.
- (3) 実験剛性は計算剛性の0.78~1.14となり若 干ばらつく.しかし,フレーム全体の剛性 で考えるとほとんど影響はない.

謝辞・参考文献 本論その2にまとめて記す.

Dept. of Architectural Eng, Osaka Univ. / Graduate Student Dept. of Architectural Eng, Osaka Univ. / Research Associate Dept. of Architecture and Environmental Design, Kyoto Univ. / Professor