履歴型ダンパー付ラーメン架構の魚骨形モデル

正会員 船木 伸彦 *1

加村 久哉 *2

桑原 進*1

井上 一朗 *1

1. 序

本論では、図1に示すような履歴型ダンパー付長方形ラーメン構造を対象とする.柱・梁で構成されるラーメン部分をフレーム、履歴型ダンパーを構成する部分をダンパー系と称する.本論の目的は、文献1)におけるラーメン架構の魚骨形モデルを用いて、履歴型ダンパー付架構を魚骨形モデルに変換する方法を提示し、地震応答解析結果によりそのモデルを検討することにある.

2. 履歴型ダンパー付架構の魚骨形モデル

図1に示すように、履歴型ダンパー付架構はフレームとダンパー系にわけてモデル化する.フレームは魚骨梁と魚骨柱で構成される魚骨形モデル()に変換する.ただし、履歴型ダンパー付架構ではダンパーが塑性化する前後でフレームのモーメント分布が異なるので、魚骨梁の初期降伏モーメント()を算定する際には、ダンパー付架構とフレームだけの2つの弾性解析結果を用いる. ダンパー系は各層の層間変形だけに依存するせん断バネにモデル化し、魚骨形モデルに図1のように組み込む.複数のスパンにダンパーが設置されている場合には、ダンパー系をスパンごとにモデル化し、複数のせん断バネを並列に設置する.このダンパー系の復元力特性は図2に示すような完全弾塑性型とし、せん断耐力・弾性剛性を与えて特定する.

i層のダンパー系のせん断耐力 $_{D}Q_{yi}$ は 履歴型ダンパー 降伏時にダンパー系が分担する水平耐力とする.

次にダンパー系の弾性剛性について考える 履歴型ダンパー付架構においては,ダンパーからの付加軸力によってダンパー支持柱に軸方向伸縮が生じ,架構に曲げ変形が発生する.この曲げ変形により,ダンパー系の見かけ

の弾性剛性が低下する.したがってダンパー系をモデル化する際には,この曲げ変形を考慮する必要がある.曲げ変形を考慮すると,i層のダンパー系の降伏層間変形角 $_DR_{yi}$ は図 $_3$ のせん断変形による降伏層間変形角 $_{DM}R_{yi}$ と図 $_4$ のダンパー降伏時の曲げ変形による層間変形角 $_{DM}R_{yi}$ の和として次式で表される.

$$_{D}R_{vi} = _{DS}R_{vi} + _{DM}R_{vi} \tag{1}$$

せん断変形による降伏層間変形角 $_{DS}R_{yi}$ は,例えば図1のK形プレースを想定する場合,次式で表される.

$$_{DS}R_{yi} = \frac{\left(\frac{2H_{i}}{L_{D}}\right)^{2} + 1}{\frac{2H_{i}}{L_{D}}} \frac{\sigma_{Dy}}{E}$$
 (2)

ただし, L_D はダンパーが設置されているスパンのスパン長,Eはヤング係数, σ_{Dy} はブレースの降伏応力度, H_i は階高である.ここでは,ダンパー降伏時の曲げ変形 DMR_{yi} を「各層のダンパーがすべて降伏値に達したときの付加軸力に対してダンパー支持柱の軸方向伸縮を決める」という仮定を用いて算定する.ダンパーからの付加軸力 N_{Di} によって,図 4 のように柱は伸縮する.この i 層の

図2 ダンパー系の復元力特性 図

図3 せん断変形

The fishbone-shaped frame model of moment resisting frames combined with hysteretic dampers

柱の伸縮量 μ_i は次式で表される.

$$\mu_i = \frac{N_{Di} H_i}{E A_{Ci}} \tag{3}$$

$$N_{Di} = \sum_{k=i+1}^{N} \frac{{}_{D}Q_{yi}H_{i}}{L_{D}}$$
 (4)

ただし, A_{Ci} は i 層のダンパー支持柱の断面積, E はヤング係数である.

(3)式の柱の伸縮によって, i層床梁と i+1 層床梁には,次式で表される相対回転角が生じる.

$$\rho_i = \frac{2 \; \mu_i}{L_D} \tag{5}$$

したがって曲げ変形による層間変形角は次式で表される.

$${}_{DM}R_{yi} = \sum_{k=1}^{i-1} \rho_k = \frac{2}{E L_D} \sum_{k=1}^{i-1} \frac{N_{Dk} H_k}{A_{Ck}}$$
 (6)

(1) ~ (6)式より , i 層のダンパー系の弾性剛性 K_{Di} は次式で得られる .

$$K_{Di} = \frac{{}_{D}Q_{yi}}{{}_{D}R_{vi}H_{i}} = \frac{{}_{D}Q_{yi}}{\left({}_{DS}R_{vi} + {}_{DM}R_{vi} \right)H_{i}}$$
(7)

なお,曲げ変形を無視した場合のi層のダンパー系の弾性剛性は,次式で得られる.

$$K_{Di} = \frac{{}_{D}Q_{yi}}{{}_{DS}R_{yi}H_i} \tag{8}$$

3 解析骨組

解析骨組は,文献2)で用いられた履歴型ダンパー付架構と同じで,履歴型ダンパーとして K 形の座屈拘束ブレース(ブレースの降伏応力度が2.4 t/cm²の M シリーズ)を想定している.図5に6層骨組の形状を例として

示す、骨組の層数は $3\cdot6\cdot9\cdot$ 12の4種類とする、ダンパー系の耐力分担率 β は、 $0.0\cdot0.1\cdot0.2\cdot0.4\cdot0.6$ の5通りとする、設計条件はすべて文献 2)と同じである 表 1 に解析骨組一覧を示す、

4. 解析結果及び考察

部材レベルでモデル化された詳細骨組モデル(以下骨組モデル)³⁾の解析結果を正解値として,魚骨形モデルの解析結果と比較する.

4.1 静的增分解析結果

静的増分解析結果を図 6 に示す . 縦軸は層せん断力 Q_i , 横軸は層間変形角 R_i である . 図中の点線はダンパー系

表 1 解析骨組一覧

層数	ダンパー系の分担率 eta					
	0.0	0.1	0.2	0.4	0.6	
3	BO3-00	BO3-01M	BO3-02M	BO3-04M	BO3-06M	
6	BO6-00	BO6-01M	BO6-02M	BO6-04M	BO6-06M	
9	BO9-00	BO9-01M	BO9-02M	BO9-04M	BO9-06M	
12	BO12-00	BO12-01M	BO12-02M	BO12-04M	BO12-06M	

の曲げ変形を考慮した魚骨形モデルの結果を,実線は骨組モデルの結果を示している .6・12 層骨組で耐力分担率が 0.2・0.4 の場合だけを示すが,他の骨組についてもほぼ同様の結果が得られている.曲げ変形を考慮した魚骨形モデルの弾性剛性は,骨組モデルの弾性剛性に比べて若干大きい .これは魚骨形モデルでは ,同一床レベルの節点回転角はすべて等しいという拘束条件を与えているためである .一方 ,魚骨形モデルと骨組モデルの保有水平耐力は良く一致している .

図7は12層骨組で耐力分担率が0.2・0.4の場合について,各層の系全体の弾性剛性を骨組モデルと魚骨形モデルとで比較した図である.縦軸は層,横軸は魚骨形モデルと骨組モデルの系全体の弾性剛性の比 \overline{K}/K である.曲げ変形を考慮した魚骨形モデルの結果は12層以外では1.0近傍の値をとっているが,曲げ変形を無視した魚骨形モデルの結果は1.0より大きく耐力分担率が大きい上層部において顕著である.これは,分担率が大きいほど,また上層部ほど曲げ変形は大きくなることに起因している.

曲げ変形を考慮しても,12層においては1.0より大きくなっている.これは,骨組モデルの12層のダンパーの降伏が他の層よりも極端に遅れ,骨組モデルの12層にはすべてのダンパーが降伏したと仮定したときにほぼ等しい曲げ変形が早期に生じるためである.

4.2 地震応答解析結果

次に魚骨形モデルと骨組モデルの地震応答解析結果を比較する 地震応答解析に用いた入力地震動は表 2 に示す 2 種類 (Yokohama 4), NTTB3NS 5)である.減衰は減衰定数が 0.02 の初期剛性比例型とする.なお,魚骨形モデルの損傷に寄与する地震入力エネルギーを骨組モデルのそれと等しくする.損傷に寄与する地震入力エネルギ E_{dm} は次式で定義される.

$$E_{dm} = (E_e + E_i - E_g)_{\text{max}}$$
 (9)

表 2 入力地震波

入力地震動	最大加速度	最大速度	継続時間
Yokohama	312cm/s ²	52cm/s	40sec
NTTB3NS	331cm/s ²	87cm/s	20sec

骨組モデル	曲げ変形考慮
::::::::::::: 魚骨形モデル	曲げ変形無視

図8 曲げ変形が最大層間変形角に及ぼす影響

ただし , E_e は歪エネルギ - , E_i は運動エネルギ - , E_g は重力仕事である .

4.2.1 曲げ変形を無視した場合

曲げ変形が地震応答解析結果に及ぼす影響について示す.図8は耐力分担率が0.2・0.4の12層骨組の最大層間変形角の高さ方向分布図である.実線は骨組モデルの結果,太い点線は曲げ変形を考慮した魚骨形モデルの結果である.曲げ変形を考慮した魚骨形モデルの結果は骨組モデルに良く一致している.しかし,曲げ変形を無視した魚骨形モデルの結果は,他の2つのモデルより小さい値をとっており,耐力分担率が大きい方(分担率が0.4)の骨組において顕著である.したがって,ダンパー系をモデル化する際には,曲げ変形を考慮する必要がある.

4.2.2 曲げ変形を考慮した場合

次に曲げ変形を考慮した場合の魚骨形モデルと骨組モ デルの比較を行う. 図 9 に正側と負側の最大層間変形角 R_{max} の高さ方向分布を,図10にダンパー系の塑性履歴 吸収エネルギー E_{ni}^{D} の高さ方向分布を示す.図 9・図 10において,実線は骨組モデルの結果であり,点線は魚骨形 モデルの結果である.また,太い実線・点線は入力地震波 が Yokohama の場合,細い実線・点線は入力地震波が NTTB3NS の場合の結果である. なおここでは, 6・12 層 骨組で耐力分担率が 0.2・0.4・0.6 の骨組について示すが, 他の骨組についても同様の結果が得られている.骨組モ デルと魚骨形モデルの正側と負側の最大層間変形角の高 さ方向の分布・ダンパー系の塑性履歴吸収エネルギーの 高さ方向分布は,よく一致している.図11に梁の塑性履 歴吸収エネルギー , 図 12 に梁の累積塑性回転角 $\Sigma \theta_p$ の 高さ方向分布を示す.図11の骨組モデルのi+1床の梁の 塑性履歴吸収エネルギー $E^{\scriptscriptstyle B}_{\scriptscriptstyle ni}$ は , i+1 床を構成する梁・パ

ネル及びそれに接続する柱端の塑性履歴吸収エネルギー の和である.図12において, 印は骨組モデルの結果, 実線は魚骨形モデルの結果である.骨組モデルの結果は 梁端の累積塑性回転角とそれに接続するパネルの累積塑 性変形角の和 1)で,床ごとに6個図示している.魚骨形 モデルの結果は,魚骨形モデルの結果を用いて骨組モデ ルの梁の最大累積塑性回転角を予測した値 1)である.ここ では,12層骨組で耐力分担率が0.1・0.2・0.4の骨組につ いて、比較的フレームに損傷があった入力地震波が NTTB3NS の場合について示す、梁の塑性履歴吸収エネ ルギーは,骨組モデルと魚骨形モデルとで良く対応して いる.図12において魚骨形モデルの梁の累積塑性回転角 の結果は,分担率が小さいほど骨組モデルの最大値の良 好な近似値を示している傾向にある.これは,図11にお いて分担率が小さいほど梁の塑性履歴吸収エネルギーが 大きいためである.

5.結

本論では履歴型ダンパ - 付骨組を魚骨形モデルに変換する方法を提示し,詳細骨組モデルと魚骨形モデルの解

析結果により、そのモデルを検討した.また、詳細骨組モ

デルとダンパ - 系からの付加軸力によって生じる曲げ変

形を考慮した場合と無視した場合の魚骨形モデルの比較

1) ダンパー系をモデル化する際には, ダンパーからの

付加軸力によって生じる曲げ変形により、ダンパー

系の見かけのせん断剛性が低下することを考慮する

2) 骨組モデルと魚骨形モデルの最大層間変形角・ダン

パ - 系の塑性吸収エネルギ - 応答は良く一致する。

応答解析モデルへのモデル化について、日本建築学会近畿支部

, 井上一朗:鋼構造ラーメン骨組の魚骨形

も行った.その結果以下のことが得られた.

必要がある.

研究報告集,1998.7

小川厚治

【参考文献】

1)加村久哉

Dept. of Architectural Engineering, Faculty of Engineering, Osaka Univ.

^{*1} 大阪大学工学部建築工学科

^{*2} NKK基盤技術研究所都市工学研究部 Civil and Building Material Research Dept.,Applied Tecnology Center,NKK Corp.