同 瀧野敦夫*3 同 柏 尚稔*3

大阪通天閣の常時微動計測と風観測による振動特性

正会員 〇横溝礼子*1 同 山口陽司*1 同 宮本裕司*2

2.構造—2.振動

常時微動計測、人力加振、風観測、振動特性、鉄骨造タワー

<u>1. はじめに</u>

通天閣は、大阪のシンボルの展望塔として年間 115 万人が訪れる有名な観光名所であり、建築後 50 年を 経過した 2006 年に登録有形文化財に指定されてい る(写真 1)。通天閣では、1956 年に建設直後の振動 性状を把握するための第 1 回振動実験¹⁾と、その後 14 年経過した 1970 年に第 2 回振動実験²⁾が実施さ れた。最近では、2010 年に耐震診断³⁾が行われてい るが、その間に平成の大改修などを経ており、現在 の正確な振動性状は把握されていない。

一方、通天閣が建つ大阪府では、東南海・南海地 震や上町断層帯地震が懸念されている⁴⁾。大阪のシン ボルである通天閣をこのような地震の脅威から守る ため、現在の振動性状をモデル化した解析モデルを 用いて地震応答解析を行い、耐震性能を評価するこ とが必要である。

本論文では、2011 年 8 月 3 日~5 日にわたって振 動計測を行い、固有振動数と減衰定数を算定し、振 動性状の経年変化を把握した。また、耐震診断で用 いられた地震応答解析モデルをもとに、新たに得ら れた振動特性に合うようにモデル化の検討を行った。

<u>2. 通天閣の概要と地盤特性</u>

通天閣は、大阪市浪速区恵美須東に位置している。 建物概要を表1に示す⁵⁾。建設地点の地質は、後期更 新世~完新世時代の地盤である。ここでは、先ず地 盤の増幅特性を知るために行った、表層地盤の応答 解析結果について示す。建設地付近の表層地盤モデ ルを用いた応答解析は、重複反射理論による成層地 盤の等価線形化解析で行った。入力地震波には、「極 稀」に対応する告示波で、表2に示す3種類の位相 をもつ地震波を用いた。3種類の地震動を、GL-40.85m 位置の工学的基盤位置に入力し、地表面での 応答結果を求めた。

Same Viller	表	1 通天閣(の概要
Carnet William	所在地	大阪市浪速	区恵美須東
	設計者	内藤多仲	
and the second se	設計年	1955年(S30))
ASTIN	施工者	(株)奥村組	
E	竣工年	1956年(S31))
. ENE	階数	地上	5階
		地下	1階
	高さ	最高高さ	103m
		塔体高さ	100m
	構造種別	地上部	S造
			(1~3階RC被覆)
		地下部	RC造
	基礎構造	直接基礎	独立基礎
			布基礎
	用途	展望塔	
Sta F. N. Stormer			

表2 地震応答解析に用いた入力地震動

B-

通天閣

写真 1

山雪油	データ数	時間間隔	継続時間	最大加速度	最大速度	最大変位
地辰仮名		(s)	(s)	(cm/s^2)	(cm/s)	(cm)
極稀 - JMA神戸NS位相				380.1	46.4	29.1
極稀 - 乱数位相	12000	0.01	120.0	327.1	40.6	26.7
極稀 - 八戸EW位相				328.8	40.8	25

The Vibration Characteristics by Microtremor Measurement and Wind Observation of Tutenkaku in Osaka YOKOMIZO Reiko, YAMAGUCHI Yoji, MIYAMOTO Yuji, TAKINO Atsuo and KASHIWA Hisatoshi 図 1 に入力地震動に対する地表面応答波の加速度 伝達関数を示す。告示波レベルの入力地震動では、1 次、2 次のピーク振動数は、地盤線形時の 2Hz、4.5Hz からそれぞれ 1.5Hz、3.6Hz 付近に移行していること がわかる。

3. 常時微動計測と人力加振実験

通天閣の固有振動数を把握するために行った常時 微動計測と、減衰定数を把握するために行った人力 加振実験について述べる。建物は図2に示すように、 主塔と、その東側にある E.V 塔、それらをつなぐ渡 り廊下により構成される。主塔部分の中央には、エ レベーターシャフトと屋内階段を有する。

<u>3.1 計測内容</u>

常時微動計測は、2011 年 8 月 3 日から 5 日までの 3 日間で行った。計測階は、1 日目は最上階 5 階、2 日目は 3 階・2 階・E.V 塔・渡り廊下・G.L、3 日目 は 3 階・G.L である。人力加振実験は、1 日目の常時 微動の計測後、4 階で EW 方向の 1 次振動数とねじ れの 1 次振動数に合わせて加振を行い、計測は 5 階 で行った。計測には、サーボ型速度計(VSE・15D,(株) 東京測振製)を用いた。ここでは、1 日目と 2 日目の 計測結果について示す。

1日目は、図3に示す展望最上階である5階の西 側・東側・北側・南側の4点に速度計を配置し、東 西・南北・上下方向の3方向を計測した。2日目は、 避難経路として重要な主塔とE.V塔、およびそれを つなぐ渡り廊下の振動特性を把握することを目的と した。速度計は、図2の星印で示すように、2階北側・ 3階北側・E.V塔・渡り廊下・G.Lの5点に配置し、 東西方向計測後、南北方向を計測した。

100m	πL		
5階 ————————————————————————————————————		*	
鉄骨造	7		*
* 3階	渡り廊下	*	
鉄骨造 (RC被覆) RC被覆) 又GL RC造 地下1階			
<u>(102)</u> 図2 建物の概要 位置(★)(南	§と2日目計測 側立面図)	図 3 1日目 (5 階平面	計測位置 回図)
(kine·sec)			1日目5階
0.08 0.07 ▼ 1次	——東側EW方向 —	- 東側NS方向 —	- 東側UD方向
0.06	西側EW方向	西側NS方向	西側UD方向
0.05	— 北側EW方向 —	北側NS方向 —	-北側UD方向
	— 南側EW方向 —	南側NS方向 —	-南側UD方向
	▼ねじれ1次		
0.01			
			A
0.5 0.64	1 1.56	3 4 5	(Hz)
	9陸北 9陸北	EV 渡り	
0.04 (kine・sec) FW方向		E.V	ap G.L
0.03			
0.02	2次▼	▼ 3 次	
0.01			
0			
0.5	1 2 2.39	3 4 5 3 08	(Hz)
	2.00	0.00	2 日 目
0.04 (kine · sec)	2階北 3階北 ·	····· E.V — 渡り	蓈下G.L
NS方向 0.03		▼E.V 塔	
0.02	2次▼		
0.01		№ 3 次	
0	i K		/TT)
0.5	2 2 34	$2.88 \frac{4}{3.27}$	(Hz)
	図4 フーリエスイ	ペクトル	
	-		

表 4	減衰定数のまとめ

军时令举	主塔(展望塔)			
侧衰止剱	EW方向	ねじれ		
(%)	1次	1次		
第1回	-	-		
(1956年)				
第2回	0.8~0.9	-		
(1970年)	0.0 0.5			
第3回	0.02	0.74		
(2011年)	0.95	0.74		
3回/2回	$1.03 \sim 1.16$	-		

次5 版新日本による回行派到数00%と00								
主塔							E.V塔	
	NS方向		ねじれ		EW方向			NS方向
1次	2次	3次	1次	2次	1次	2次	3次	1次
0.64	2.67	2.00	-	364	0.65	2.67	2 2 2 2	_
0.04	2.07	5.20		5.04	0.05	2.07	0.00	
0.63	2 4 4	3.07	-	3 / 8	0.63	2 5 3	2 9 2	_
0.05	2.44	5.07		5.40	0.05	2.00	0.20	
0.04	9.94	2.97	1 50	4.05	0.04	9.20	2.09	0.00
0.64	2.34	3.27	1.00	4.05	0.64	2.39	5.08	2.00
1.02	0.96	1.07	-	1.16	1.02	0.94	0.95	-
	1次 0.64 0.63 0.64 1.02	NS方向 1次 2次 0.64 2.67 0.63 2.44 0.64 2.34 1.02 0.96	NS方向 1次 2次 3次 0.64 2.67 3.28 0.63 2.44 3.07 0.64 2.34 3.27 1.02 0.96 1.07	IX IX IX IX 2次 3次 1次 1次 2次 3次 1次 0.64 2.67 3.28 - 0.63 2.44 3.07 - 0.64 2.34 3.27 1.56 1.02 0.96 1.07 -	主塔 NS方向 ねじれ 1次 2次 3次 1次 2次 0.64 2.67 3.28 - 3.64 0.63 2.44 3.07 - 3.48 0.64 2.34 3.27 1.56 4.05 1.02 0.96 1.07 - 1.16	主塔 NS方向 ねじれ 1次 2次 3次 1次 2次 1次 0.64 2.67 3.28 - 3.64 0.65 0.63 2.44 3.07 - 3.48 0.63 0.64 2.34 3.27 1.56 4.05 0.64 1.02 0.96 1.07 - 1.16 1.02	主塔 NS方向 ねじれ 1次 2次 3次 1次 2次 3次 1次 2次 1次 2次 3.64 0.65 2.67 3.28 - 3.64 0.63 2.44 3.07 - 3.48 0.63 2.53 0.64 2.34 3.27 1.56 4.05 0.64 2.39	主塔 上市 上市 上市 1次 2次 3次 1次 2次 1次 2次 3次 1次 2次 3次 1次 2次 1次 2次 3次 0.64 2.67 3.28 - 3.64 0.65 2.67 3.33 0.63 2.44 3.07 - 3.48 0.63 2.53 3.23 0.64 2.34 3.27 1.56 4.05 0.64 2.39 3.08 1.02 0.96 1.07 - 1.16 1.02 0.94 0.95

表 5 タワー3 兄弟の比較

軒高(最高高さ)	固有周期	固有振動数	減衰定数	
H [m]	T [s]	f [Hz]	h[%]	
大阪通天閣	1 50	0.64	0.02	
H=100 (103)	1.00	0.64	0.95	
東京タワー	9.75	0.26		
H=254 (333)	2.75	0.56	_	
名古屋テレビ塔	1.64	0.61	0.01	
H=138 (180)	1.04	0.01	0.91	

図6 他のS造タワーとの比較

3.2 固有振動数と減衰定数

微動計測から得られたフーリエスペクトルを図 4 に、固有振動数を表 3 に示す。また、1956 年の第 1 回と 1970 年の第 2 回の結果もあわせて示す。減衰定 数は、図 5 に示す人力加振の波形において安定した 減衰域で最小二乗法を用いて算定した。表 4 に得ら れた減衰定数と過去の計測結果とあわせて示す。

過去の計測結果と比較して、固有振動数と減衰定数の変化が小さいことがわかる。また、今回の計測では、展望塔のねじれ1次の固有振動数と減衰定数として1.56Hzと0.74%を確認した。

また、通天閣と同じ内藤多仲の設計によるタワー の中で、設計年が近い名古屋テレビ塔のと東京タワー つとの比較を表5に、他のS造タワーと比較して図6 に示す⁸。

<u>4. 風観測による振動特性の評価</u>

通天閣に設置した地震計によって観測された風に よる応答波について分析する。地震計は通天閣の地 下と屋上の2箇所に設置している。風による応答波 形は2011年11月24日11時57分に計測された。 この時刻の大阪管区気象台で計測された瞬間風速は 13.8m/sであり、微動計測時の平均風速約2m/sと比 ベ大きかった。観測された波形の最大速度振幅は、 NS方向、EW方向とも微動計測時と比べ約50倍で あった。図7に示す波形のランニングスペクトルか ら、NS方向・EW方向ともに0.66Hz付近で卓越し ていることが確認できた。また、NS方向では、ねじ れ1次の1.56Hzの振動数が確認できた。振幅が大き い風揺れにおいても、微動計測時とほぼ同じピーク 振動数を示した。

<u>5. 通天閣の固有値解析</u>

耐震診断のため作成された振動モデルは、地上25 層をそれぞれ1質点とした25質点の振動モデルで、 1階柱脚を固定した等価せん断型モデルである³⁾。こ の既存モデルによる固有値解析結果を表5に示す。 常時微動計測から求めた固有周期と比べ、既存モデ ルの周期は1割程度長かった。そこで、今回の常時 微動計測の固有周期になるよう、モデルの初期剛性 を調整した。既存のモデルと調整後の改良モデルの 固有周期を表5に、1次、2次の振動モードを、第2 回振動実験²⁾から得られた振動モード図に重ね合わ せて、図7に示す。1次、2次の固有振動数と振動モ ードとも改良モデルは計測結果と対応が良くなって いる。

方向	モデル	周期(s)				
20101	- , , ,	1次	2次	3次		
	既存	1.71	0.57	0.40		
NS方向	(計測)	1.56	0.43	0.31		
	改良	1.56	0.43	0.32		
	既存	1.80	0.62	0.43		
EW方向	(計測)	1.56	0.42	0.33		
	改良	1.54	0.42	0.32		

表5 固有値解析による固有周期

<u>6. まとめ</u>

以下に、本研究で得られた結果をまとめる。

- 極稀レベルの地震動入力時の通天閣付近での表層
 地盤の増幅特性は、約 1.5Hz と約 3.6 Hz 付近にピ 7)
 ークがある。
- *1 大阪大学大学院工学研究科 大学院生
- *2 大阪大学大学院工学研究科 教授・博士(工学)
- *3 大阪大学大学院工学研究科 助教·博士(工学)

- 通天閣の1次固有振動数はNS方向・EW方向ともに0.64Hzで、1次減衰定数は0.93%であり、過去の計測結果とほぼ同じ値であった。
- 展望塔のねじれ1次固有振動数は1.56Hzで、ねじれ1次の減衰定数は0.74%である。
- E.V 塔では E.V 塔固有の振動数 2.88Hz が NS 方向のみ存在し、渡り廊下を介して展望塔と相互に影響し合う。
- 風観測による展望塔の固有振動数は0.66Hzであり、 常時微動計測時とほぼ同じ値であった。
- 既存の地震応答解析モデルの剛性を計測結果をもとに調整した。既存モデルに比べ、改良モデルは第2回振動実験時の1次、2次モードに対応している。

以上、通天閣の現在のより正確な固有周期と減衰 定数を振動計測により把握し、また建設地点の地盤 の増幅特性を検討した。今後は、通天閣の耐震性能 を評価し耐震改修へつなげていくために、渡り廊 下・エレベーター塔も含めた振動モデルをさらに検 討していく必要がある。

<u>謝辞</u>

本研究に際しまして、通天閣の西上雅章社長、高井隆 光副社長、澤田伸主任をはじめ通天閣関係各位の皆様の ご協力により、早朝の微動計測や地震計の設置およびデ ータ回収等を進めることができました。心より感謝の意 を申し上げます。

参考文献

- 1) 内藤多仲,小川 正,田中弥寿雄:大阪通天閣の再建 について,建築雑誌,1956.12
- 2) 那須信治,竹内盛雄,風間 了:大阪通天閣の第2回 振動実験,日本建築学会大会,1970.9
- 3) 奥村組:通天閣耐震診断報告書,2010.7
- 4) 地震調查研究推進本部地震調查委員会: http://www.jishin.go.jp/main/index.html
- 5) 通天閣観光株式会社:通天閣 50 年の歩み,2007
- 6) 豊部 立,福和伸夫,飛田 潤:常時微動計測・人力加 振実験に基づく名古屋テレビ塔の振動特性の推定, 日本建築学会大会,2011.8
- 7) 那須信治,竹内盛雄,藤田喜久雄,風間 了:東京タワ 一の第2回振動実験,日本建築学会大会,1969.8
- 8) 日本建築学会:建築物の減衰,2000 年

Graduated Student, Guraduate School of Eng., Osaka Univ. Prof., Graduate School of Eng., Osaka Univ., Dr.Eng.

Assistant Prof., Graduate School of Eng., Osaka Univ., Dr. Eng.